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Minimization of cost of recycling in chemical processes

Gautham Parthasarathy∗
Department of Chemical Engineering, Auburn University, 230 Ross Hall, Auburn, AL 36849, USA

Received 13 March 1999; received in revised form 3 December 1999; accepted 15 December 1999

Abstract

This paper considers an important aspect of every chemical process. Most chemical processes have streams being recycled back to
different process units. These streams have to meet certain process requirements such as flow rate and composition. Besides these material
balance constraints, their relative costs have to be considered. There is a need to determine theglobal cheapest mixing and recycling
scheme for a given process. A generic non-linear program formulation is given and a solution algorithm consisting of two different levels
is proposed. The outer level consists of iterations among different variables while the inner level consists of solution of a linear program.
In the case of lower number of sources and sinks, this paper introduces application of the simplex algorithm to derive frameworks wherein,
the optimal flow rates of the different sources can be obtained as functions of relative costs and compositions. These frameworks make
it possible to determine the cheapest recycling scheme for all available streams. Three cases with progressively increasing complexity
are considered. These cases cover a large number of potential industrial applications. This methodology is equally applicable to liquid,
solid and gaseous streams. It can handle streams coming from unit operations such as crystallization, condensation and adsorption. It
requires basic information on flow rate and compositions of all the sources and sinks being considered and the unit costs of the various
sources involved. It is easy to apply and is rigorous under the conditions listed for its use. Two different case studies are considered and
the application of the proposed solution algorithm is demonstrated. © 2001 Elsevier Science B.V. All rights reserved.
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Urea-adduct process

1. Introduction

A typical chemical process consists of a series of process-
ing steps in various units from initial reactants to final prod-
ucts. The sequence of steps to be followed is determined
by the specific process under consideration. However, most
chemical processes have one feature in common: there are a
number of streams being recycled back to different process
units. These streams typically have to meet certain process
requirements (such as flow rate and composition) of the unit
to which they are being recycled. The proportions of vari-
ous streams that are mixed and/or recycled back are usually
guided by process demands. These process requirements can
be met by a large number of permutations and combina-
tions among the streams available for potential recycle. This
paper deals with developing a systematic framework to de-
termine the cheapest possible recycling scheme that would
satisfy all process requirements. This work can be applied
to a wide range of process operations. It can be used to de-
termine the amounts of fresh materials (e.g. solvents, and
reagents) to be added along with recycled streams as part
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of make-up to a process. It can also be used to generate the
cheapest recycle and allocation strategies for condensation,
crystallization and adsorption systems.

2. Previous work

For any given process, sources and sinks can be defined.
A source is any stream in the process carrying a species of
interest while a sink is any unit in the process (such as an
absorption or distillation column) that is capable of handling
the source. A source may consist of fresh species (i.e. a
fresh source) or may have been generated in the process (i.e.
a process source). The fresh sources are typically obtained
externally (either bought or imported from another process)
and is composed of either one pure species or a mixture of
pure species. Their cost is dependent primarily on the market
value of the pure species present in them. On the other hand,
process sources are typically composed of more than one
species and their cost depends on the manner in which they
were created. Due to the limitations of the process generating
them, there may exist upper bounds on the flow rates of the
process sources.

1385-8947/01/$ – see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S1385-8947(00)00187-X



138 G. Parthasarathy / Chemical Engineering Journal 81 (2001) 137–151

Nomenclature

Cm Unit cost ofmth source (US$/kg)
j index for each sink
k index for each species
Lm Total flow rate ofmth source (kg/s)
Lsink

j Total inlet flow rate ofjth sink (kg/s)
lm,j Individual flow rate frommth source

to jth sink (kg/s)
m index for each source
mincost variable storing optimal minimum cost

solution value
N1j number of iterations for total sink inlet

flow rate of jth sink
N2j,k number of iterations for composition

of kth species injth sink
N3m number of iterations for flow rate

of mth source
N4m,k number of iterations for composition

of kth species ofmth source
Nlarge arbitrarily selected large number
Nsink total number of sinks
Nsource total number of sources
Nspecies total number of species
tj iteration index corresponding to total sink

inlet flow rate ofjth sink
uj ,k iteration index corresponding to

composition ofkth species injth sink
vm iteration index corresponding to flow rate

of mth source
wm,k iteration index corresponding to composition

of kth species ofmth source
xm,k composition ofkth species inmth source
zsink
j,k Inlet composition ofkth species for

jth sink

Subscripts
l refers to lower bound
lower refers to lower bound
sink refers to sink
source refers to source
species refers to species
u refers to upper bound
upper refers to upper bound

Superscripts
sink refers to sink
T refers to sink
u refers to upper bound

Greek Letters
α relational cost parameter
αm known upper bound on flow rate ofmth

process source (kg/s)
βj known inlet flow rate ofjth sink (kg/s)

χj ,k known inlet mass load
of kth species tojth sink (kg/s)

θ variable calculated as part of respective simplex
algorithm

The chemical process industry is lowering costs and im-
proving productivity via increased process integration. Mass
integration is a critical element of this effort. Early work in
this area focused on the synthesis of separation networks
that employed mass separating agents or MSAs. El-Halwagi
and Manousiouthakis [1] introduced the concept of mass
exchange networks or MENs. Several forms of the MEN
problem were later defined and addressed. These include
optimization based techniques for handling single [2], mul-
tiple components [3,4] and simultaneous synthesis of mass
exchange and regeneration networks [5,6]. Papalexandri
and Pistikopoulos [7] developed a structural approach to the
synthesis of MENs. Kiperstok and Sharratt [8] optimized
MENs for the removal of pollutants. Another class of sep-
aration networks is induced by the use of energy separating
agents or ESAs. Examples of these energy induced sepa-
ration networks include crystallization [9–11], distillation
[12–16], membrane separations [17,18], evaporation, drying
and condensation [19–21]. Separation networks constitute
only a subset of available mass integration strategies. In
most cases, the recovered species can and should be re-
cycled/reused in the process. Hence, separation has to be
integrated with decisions on how much of each species to re-
cover and how the recovered species will be used. Thus, we
need to invoke the more general concept of mass integration,
which is a holistic approach that deals with the optimum
generation, separation, and routing of streams and species
[22–24]. El-Halwagi et al. [22] came up with the concept of
waste interception and allocation networks that shifted the
entire focus from end of pipe treatment to in plant treatment.
A particularly useful framework for integration, allocation,
generation and separation of streams and species is given
in Fig. 1.

Fig. 1. Mass integration framework [22–24].



G. Parthasarathy / Chemical Engineering Journal 81 (2001) 137–151 139

Fig. 2. Mixing and recycling strategies for dilute single component
systems.

The mass integration approach uses different strategies to
achieve its targets. These include segregation (i.e. avoiding
stream mixing), mixing and recycling (i.e. sending a partic-
ular source to a specified sink). The mixing and recycling
strategies adopted are not arbitrary but are generated by the
application of rigorous rules. For dilute systems, El-Halwagi
[25] describes graphical mixing rules for the case of a single
pollutant present in aqueous sources.

Let us assume we have two pollutant laden sources,
B and C, and one process sink, which can accept these
sources. The sink will have upper and lower bounds on
the composition (xupper and xlower) and flow rates (Fupper

and Flower) of the sources that it can accept. As shown in
Fig. 2, the sink is represented as a box while the sources are
represented as points. This diagram is called as the source
sink diagram. Fresh water is represented on they-axis as
its pollutant composition is assumed to be zero. Currently,
the fresh water is being supplied to the sink via source A
and it is desired to lower fresh water requirement by mix-
ing and recycling sources B and/or C to the sink. In this
case, the lever arm rule for mixing is applied. The source
with the least arm should be recycled so as to minimize
the fresh water requirement. As arm ‘c’ is smaller than
arm ‘b’ in Fig. 2, the strategy to minimize fresh water is to
mix source C with fresh water, followed by recycle to the
sink. For dilute streams with multiple components, similar
analysis can be carried out by assuming that each species
behaves independent of the other species. As the species
being tracked is present in very low concentrations, the
cost of mixing and recycling is primarily contributed by the
fresh water requirement. Therefore, the cost of mixing and
recycling is minimized at minimum fresh water usage in the
process.

However, in the case of sources with high concentrations
of the species of interest, the cost of mixing and recycling

Fig. 3. Mixing and recycling rule for ternary system with single source
and sink.

will be a function of all species present. Some papers have
addressed the problem of obtaining minimum cost solu-
tions to the condensation and allocation of multiple volatile
organic compounds [26]. Graphical solutions were devel-
oped for the case of four component systems (e.g. an inert
carrier and three VOCs). A triangular source sink diagram
was introduced with the triangle acting as the composition
plane. Mixing rules were developed to determine allocation
of various sources to different sinks such that the overall
cost is minimized. An example is given in Fig. 3. This rule
determines the location of a source for mixing and recy-
cling given a source and sink with known locations on the
composition triangle.

Source 1, at a compositionC1 and flow rateF1, is to be
mixed with source 2 (whose location in the composition tri-
angle is unknown and has to be determined) such that the
resultant stream satisfies the requirements for sink 1 with
compositionsCT and flow rateFT. From the lever arm rule
for mixing, source 2 will lie on a straight line joining sink 1
and source 1 but on the other side of sink 1. The cost objec-
tive function is given byF1C1+F2C2, which is minimized
when, forC2>C1, we maximizeF1. For this condition to be
satisfied, the lever arm rule dictates that the arm correspond-
ing to source 2 should be maximized. So, source 2 will lie
on a straight line joining sink 1 and source 1 but as far away
as possible on the other side of sink 1.

However, a drawback of all these rules is that they are
valid under specific conditions. There is a need for a method
to determine the minimum cost of mixing for a generic pro-
cess. The graphical approach is also limited to cases with
dilute streams or specific cases of concentrated systems. As
described previously for the VOCs, all the sinks and sources
have fixed compositions and flow rates. However, in indus-
trial applications, the flow rates and compositions of both
the sources and sinks can fluctuate. Therefore, it is more ac-
curate to define an operating range for each source and sink.
In this case, it would be difficult to come up with a generic
rule to determine minimum cost of recycling, as there are a
multitude of possible flow rates and compositions for each
source and sink being considered.
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Fig. 4. Optimal mixing and allocation representation.

3. Problem definition

The problem may be given as

min =
Nsource∑

m=1

LmCm (1)

For each sourcem, Lm andCm refer to the total source
flow rate and unit cost respectively whilexm,k refers to the
source composition, wherek is the index for each species
present. The cost of each fresh source is the cost of fresh
species used to make the source. The cost of each process
source is the cost involved in synthesizing the source (e.g.
if the source was obtained via crystallization then the total
cost of crystallization divided by the total amount of the
source crystallized out would be the unit cost of the process
source). For each sinkj, Lsink

j refers to the total sink inlet

flow rate,zsink
j,k refers to the sink inlet composition, wherek

is the index for each species present. Also,lm,j refers to the
individual flow going from sourcem to sink j.

The following constraints would describe the mixing and
allocation problem and incorporates all the segregation, mix-
ing and recycle constraints (refer Fig. 4).

Source material balance:

Lm =
Nsink∑

j=1

lm,j , m = 1, 2, . . . , Nsource (2)

Lm refers to both process and fresh sources. For process
sources, there may exist upper bounds on the total flow rate
available for recycle. For fresh sources, there is no upper
bound as these are typically purchased externally.

Sink material balance:

Lsink
j =

Nsource∑

m=1

lm,j , j = 1, 2, . . . , Nsink (3)

Sink inlet composition balance:

Lsink
j zsink

j,k =
Nsource∑

m=1

lm,j xm,k, j = 1, 2, . . . , Nsink,

k = 1, 2, . . . , Nspecies (4)

Source limits:

xm,k,lower ≤ xm,k ≤ xm,k,upper,

Lm,lower ≤ Lm ≤ Lm,upper, m = 1, 2, . . . , Nsource,

k = 1, 2, . . . , Nspecies (5)

Sink inlet limits:

zsink
j,k,lower ≤ zsink

j,k ≤ zsink
j,k,upper,

Lsink
j,lower ≤ Lsink

j ≤ Lsink
j,upper, j = 1, 2, . . . , Nsink,

k = 1, 2, . . . , Nspecies (6)

4. Design challenges

As the problem requires non-linear optimization, a global
solution is not guaranteed. There exist a large number of
potential flow rates and compositions for each of the pro-
cess sources and sinks under consideration. This implies
a large number of combinations among various streams to
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meet the requirements of the different process sinks. The
optimal solution is a function of the material balance and
relative costs of the different sources present in the process.
There may also exist multiple components in the system
that increases the complexity of the problem. These aspects
combine to make the above-defined problem challenging to
solve.

5. Solution strategy

This non-linear optimization problem can be solved via
the proposed two level solution strategy. It may be noted
that the non-linear program reduces to a linear problem in
the special case of fixed compositions and flow rates of all
sources and sinks being considered.

min =
Nsource∑

m=1

LmCm (7)

subject to

Nsink∑

j=1

lm,j = Lm ≤ αm (8)

For process sources, the upper bound on flow rate is known
and represented byαm, while for fresh sources, Eq. (8) is
given as

Nsink∑

j=1

lm,j = Lm (8)

Nsource∑

m=1

lm,j = Lsink
j = βj (9)

Nsource∑

m=1

lm,j xm,k = Lsink
j zsink

j,k = χj,k (10)

The above formulation is a linear program with all linear
constraints for known values ofαm, βj , χj,k and composi-
tions. This program can be evaluated globally.

As part of the global solution strategy, the given problem
is divided into two levels. The first outer level considers all
possible values of the various sources and sink compositions
and flow rates while the second inner level gives the optimal
mixing ratio of available sources to satisfy the requirements
of all sinks at minimum cost. The inner level involves the
solution of a linear program to come up with optimal recy-
cling strategies. Once these strategies have been formulated,
the outside iteration is defined and the solution algorithm is
complete.

Given subsequently is the solution methodology to be
followed to come up with a global solution to this non-linear
optimization problem.

1. The following increments are defined.

1Lsink
j =

Lsink
j,upper− Lsink

j,lower

N1j

, j = 1, 2, . . . , Nsink

(11)

1zsink
j,k =

zsink
j,k,upper− zsink

j,k,lower

N2j,k

,

j = 1, 2, . . . , Nsink, k = 1, 2, . . . , Nspecies− 1

(12)

1Lm = Lm,upper− Lm,lower

N3m

, m = 1, 2, . . . , Nsource

(13)

1xm,k = xm,k,upper− xm,k,lower

N4m,k

,

m = 1, 2, . . . . . . . . . , Nsource,

k = 1, 2, . . . . . . . . . , Nspecies− 1 (14)

2. We define four sets of indices namely,tj , uj,k, vm, and
wm,k corresponding toLsink

j , zsink
j,k , Lm andxm,k, respec-

tively. The variable mincost is defined to contain the
minimum cost global solution and is set initially to an
arbitrarily high value,Nlarge. All indices are initially set
to zero.

3. The outer level of the solution procedure consists of
iterations among all permissible values of the variables
Lsink

j , zsink
j,k , Lm and xm,k The inner level consists of a

linear problem that can be solved globally. For each of
the above variables

Lsink
j =Lsink

j,upper− tj1Lsink
j , j = 1, 2, . . . , Nsink (15)

zsink
j,k = zsink

j,k,upper− uj,k1zsink
j,k , j = 1, 2, . . . , Nsink,

k = 1, 2, . . . , Nspecies− 1 (16)

Lm=Lm,upper− νm1Lm, m = 1, 2, . . . , Nsource (17)

xm,k = xm,k,upper− wm,k1xm,k, m = 1, 2, . . . , Nsink,

k = 1, 2, . . . , Nspecies− 1 (18)

As all the compositions should add up to 1.0

zsink
j,Nspecies

= 1.0 −
Nspecies−1∑

k=1

zsink
j,k , j = 1, 2, . . . , Nsink

(19)

xm,Nspecies=1.0 −
Nspecies−1∑

k=1

xm,k, m = 1, 2, . . . , Nsource

(20)

The composition of any of theNspeciespresent can be
calculated by difference using the above two equations.
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Each of the iterations in the outer loop is carried out
till the following conditions are satisfied:

tj ≤ N1j , j = 1, 2, . . . , Nsink (21)

uj,k ≤ N2j,k, j = 1, 2, . . . , Nsink,

k = 1, 2, . . . , Nspecies− 1 (22)

vm ≤ N3m, m = 1, 2, . . . , Nsource (23)

wm,k ≤ N4m,k, m = 1, 2, . . . , Nsource,

k = 1, 2, . . . , Nspecies− 1 (24)

4. The inner level consists of calculation of minimum cost
for a linear program and storing this value in the variable
mincost. For the first iteration, mincost is set equal to
Nlarge. For all subsequent iterations, the calculated cost is
compared with the previous minimum value and the least
of the two values is stored. Once all iterations are com-
pleted, the minimum cost global solution is obtained. An
example of a typical solution algorithm is given in Fig. 5.
This algorithm is applicable for the case of a system
with two fresh species present with one process source
and one process sink. There are four iteration indices,i,
j, k andl, which are trackingf T, xT, f andx, respectively.
i min, j min, k min and l min are the respective values
of these iteration indices at the global optimal point.f T

and xT refer to total inlet flow rate and composition of
the process sink, whilef andx refer to the flow rate and
composition of the process source.f T

u , xT
u , fu and xu,

and f T
l , xT

l , fl and xl refer to the respective upper and
lower bounds on each of the variables. Four different
increments are defined as follows:

DfT = f T
u − f T

l

N1
(25)

DxT = xT
u − xT

l

N2
(26)

Df = fu − fl

N3
(27)

Dx = xu − xl

N4
(28)

N1, N2, N3 andN4 are pre-defined numbers, which can be
increased to have lower increments.

The linear program can be solved rigorously by employ-
ing a commercial optimization package such as GINO [27].
But, these optimization packages do not offer the option of
iterating among different variables as is required to come up
with the global solution. To overcome these difficulties, the
concept of the simplex algorithm is invoked [28–31]. The
simplex algorithm can be used to generate optimal recycling
solution strategies for linear programs. As part of the simplex
algorithm, various artificial and slack variables are defined

and the different tableaux are created. The successive trans-
formations of the tableaux are then carried out in accordance
with the various rules of the simplex method. We develop
a framework of the available optimal strategies for recy-
cling. These strategies are functions of different variables
including the costs, compositions and flow rates of different
sources and sinks present in the process. However, it must
be noted that one of the drawbacks of the simplex algorithm
is that, the number of potential solution strategies increases
almost exponentially as the number of sources and sinks be-
ing considered increase. Subsequently, these strategies have
been developed for three cases, which consider binary and
ternary mixtures with one or two sources available for poten-
tial recycling in the process. These cases would cover a large
number of potential recycling problems in industry. If neces-
sary, similar strategies can be developed for larger number of
sources and sinks based on extension of the same principles.

6. Simplex algorithm application

The determination of the cheapest possible recycling
option should be taken based on consideration of both ma-
terial balances and process economics. Cases 1 and 3 deal
with binary systems while Case 2 considers a ternary sys-
tem. Sample examples and calculations are given for Cases
1 and 2.

6.1. Case 1

This case considers two fresh species, one process source
and one process sink. Let us assume that the process un-
der consideration requires a mixed solvent consisting of two
species 1 and 2. There is one process source namely, source
3 (which may have been generated via condensation, crys-
tallization or adsorption) from solvent recovery. There are
two fresh sources 1 and 2 corresponding to the fresh species
1 and 2. All compositions are given in terms of species 1.

6.1.1. Examples
1. The process sink requires that all sources being fed in

add up to a total flow rate (ft) of 10 kg/s and an overall
composition (xt) of 0.35.

2. The flow rate (f U
3 ) and composition (x3) of source 3 are

5 kg/s and 0.75 and it is obtained at a cost ofC3=US$
0.23/kg.

3. Let fresh species 1 and 2 costC1=US$ 0.2/kg and
C2=US$ 0.45/kg, respectively.
The objective function is to minimize the cost of mixing,

which is given byf1C1+f2C2+f3C3. Considering the cost
information, it would seem that source 1 and source 3 should
be used to satisfy the sink demand, as these are the cheapest
sources. Another option is to recycle the recovered stream
(i.e. process source 3) to its maximum and make up the rest
of the sink demand by using fresh sources 1 and 2. Some of
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Fig. 5. Proposed solution algorithm.

the possible solutions to this problem can be summarized as
follows:
1. f3=4.0, f1=0.5, f2=5.5 (cost of mixing=US$ 3.495/s)
2. f3=3.0, f1=1.25,f2=5.75 (cost of mixing=US$ 3.53/s)
3. f3=1.0, f1=2.75,f2=6.25 (cost of mixing=US$ 3.59/s)

One can come up with more combinations to determine the
minimum cost solution. However, the cheapest possible so-
lution is to use fresh source 2 and process source 3 with flow
rates f2=5.33 andf3=4.67 (cost of mixing=US$ 3.47/s).
This solution is not obvious from either the cost data or
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Fig. 6. Flowchart for two fresh sources and one process source.

any other information provided, but it can be obtained from
Fig. 6. This flow chart has been derived using the simplex
method as applied to minimization of the cost of mixing and
recycling.

The relational cost parameter (α) is first calculated.

α = (C3 − C2) + x3(C2 − C1) (29)

If α is positive, then the cheapest option is to usef1 andf2 as

f1 = ft ∗ xt, f2 = ft ∗ (1 − xt) (30)

If α is negative, there are two possibilities.

Case A. x3<xt

f1 = ft(xt − x3)

(1 − x3)
, f2 = 0.0, f3 = ft(1 − xt)

(1 − x3)
(31)

Case B. x3>xt

f1 = 0.0, f2 = ft(x3 − xt)

x3
, f3 = ft ∗ xt

x3
(32)

If the calculatedf3 value exceedsf U
3 , then we have to use

all three sources to get the cheapest solution

f1 = ft ∗ xt − x3 ∗ f U
3 ,

f2 = ft ∗ (1 − xt) − (1 − x3) ∗ f U
3 , f3 = f U

3 (33)

Thus, in the above example,α=−0.0325 and sincex3>xt,
f2 and f3 are used as per the above formulae. We getf2=
5.33 andf3=4.67 and note thatf3 ≤ f U

3 . Therefore, the
cheapest recycling scheme can be easily determined.

6.2. Case 2

This case considers three fresh species and one process
source. Let us assume that the process under consideration
requires a mixed solvent consisting of three species 1, 2

and 3. There is one process source namely, source 4 (which
may have been generated via condensation, crystallization
or adsorption). There are three fresh sources 1, 2 and 3
corresponding to fresh species 1, 2 and 3.

6.2.1. Examples
1. The process sink requires that all sources being fed in

add up to a total flow rate (ft) of 10 kg/s and an over-
all composition of xt1=0.35, xt2=0.35 and xt3=0.3 for
species 1, 2 and 3, respectively.

2. The flow rate (f U
4 ) of process source 4 is 5 kg/s and

composition ofx1=0.8, x2=0.05 andx3=0.15 and it is
obtained at a cost ofC4=US$ 0.15/kg.

3. Let fresh species 1, 2 and 3 costC1=US$ 0.1/kg,
C2=US$ 0.25/kg andC3=US$ 0.45/kg, respectively.
Considering the cost information, it would seem sources

1, 2 and 4 should be used to satisfy the sink demand, as these
are the cheapest sources. Some of the possible solutions can
be summarized as follows:
1. f1=2.7, f2=3.45, f3=2.85, f4=1.0 (cost of mixing=

US$ 2.565/s);
2. f1=1.9, f2=3.4, f3=2.7, f4=2.0 (cost of mixing=

US$ 2.555/s);
3. f1=1.1, f2=3.35, f3=2.55, f4=3.0 (cost of mixing=

US$ 2.545/s).
One can come up with more combinations to determine

the minimum cost solution. However, the cheapest possi-
ble solution is to use fresh sources 2 and 3 with process
source 4 at flow ratesf2=3.28,f3=2.34 andf4=4.375 (cost
of mixing=US$ 2.53/s). This solution is not obvious from
the either the cost data or any other information provided,
but it can be obtained from Fig. 7. This flow chart has been
derived using the simplex method as applied to minimiza-
tion of the cost of mixing and recycling.

The relational cost parameter (α) is first calculated as

α = C4 − (C1x1 + C2x2 + C3x3) (34)

If α is positive, then the cheapest option is to use

Fig. 7. Flowchart for three fresh sources and one process source.
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f1, f2 andf3 as

f1 = ft ∗ xt1, f2 = ft ∗ xt2,

f3 = ft ∗ (1 − xt1) − ft ∗ xt2, f4 = 0.0 (35)

If α is negative then there are three possibilities. The values
of θ1, θ2, andθ3 are calculated as

θ1 = ft
xt1
x1

, θ2 = ft
xt2
x2

, θ3 = ft
xt3
x3

(36)

Depending on which among these is the least value, the
following solutions are obtained:

Case A. θ1 is least

f1 = 0.0, f2 = ft ∗ xt2 − ft ∗ xt1
x2

x1
,

f3 = ft ∗ xt3 − ft ∗ xt1
x3

x1
, f4 = ft

xt1
x1

(37)

Case B. θ2 is least

f1 = ft ∗ xt1 − ft ∗ xt2
x1

x2
, f2 = 0.0,

f3 = ft ∗ xt3 − ft ∗ xt2
x3

x2
, f4 = ft

xt2
x2

(38)

Case C. θ3 is least

f1 = ft ∗ xt1 − ft ∗ xt3
x1

x3
, f2 = ft ∗ xt2 − ft ∗ xt3

x2

x3
,

f3 = 0.0, f4 = ft
xt3
x3

(39)

Fig. 8. Flowchart for two fresh sources and two process sources.

If the calculatedf4 value exceedsf U
4 , then we have to use

all four sources to get the cheapest solution.

f1 = ft ∗ xt1 − x1 ∗ f U
4 , f2 = ft ∗ xt2 − x2 ∗ f U

4 ,

f3 = ft ∗ xt3 − x3 ∗ f U
4 , f4 = f U

4 (40)

Thus, in the example above,α=−0.1 and

θ1 = 4.375, θ2 = 70, θ3 = 20

So, θ1 is least and the different flow rates can be calcu-
lated asf1=0.0, f2=3.28, f3=2.34 andf4=4.375 (cost of
mixing=US$ 2.53/s) and note thatf4 ≤ f U

4 . Therefore, the
cheapest recycling scheme can be easily determined.

6.3. Case 3

This case considers two fresh species and two process
sources. Suppose, a mixed solvent consisting of two species
1 and 2 is used in the process. There are two process sources,
namely source 3 and 4. All compositions are given in terms
of species 1. The sink requires that all sources being fed in
add up to a total flow rate ft and an overall composition of
xt. Let process sources 3 and 4 have flow rates off U

3 and
f U

4 while their compositions arex3 andx4, respectively. Let
their unit costs beC3 and C4, respectively. There are two
fresh sources 1 and 2 corresponding to the fresh species 1
and 2. Let fresh sources 1 and 2 costC1 andC2, respectively.
The framework for this case is given in Fig. 8. This flow
chart has been derived using the simplex method as applied
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to minimization of the cost of mixing and recycling. The
relational cost parameter (αP) is calculated first for each
process source which is given as:

αP = (CP − C2) + xP(C2 − C1) (41)

whereCp and xp are the unit cost and composition of the
respective process source. We choose source 3 as the process
source with more negative of theαPs. So,

α3 = (C3 − C2) + x3(C2 − C1),

α4 = (C4 − C2) + x4(C2 − C1) (42)

Also, α3=α′. Fig. 8 can be used to get to the cheapest re-
cycling scheme. Some of the formulae needed are listed in
the Appendix A.

As can be seen from Case 3, the complexities increase
rapidly as higher number of sources are considered but these
three cases should be able to handle a wide variety of po-
tential recycling schemes in typical chemical processes.

Thus, the inner level, consisting of a linear program, can
be solved globally to come up with optimal recycling strate-
gies. When coupled with the outer level iterations, this so-
lution approach leads to global solutions to the previously
defined non-linear optimization problem. We now consider
the application of these principles to two case studies.

7. Case study

Case study one considers a penicillin manufacturing plant
while case study two considers a urea-adduct process. Case

Fig. 9. Process flow diagram for the manufacture of penicillin.

study one utilizes the simplex rules for the binary case with
one process sink as described previously. Case study two ap-
plies the simplex rules for the ternary case with one process
sink as described previously. Both these case studies are ex-
amples of the application of the proposed solution algorithm
to actual industrial processes.

7.1. Case study one

Given in Fig. 9 is the process flow diagram for the
manufacture of penicillin [32]. The antibiotic-producing
microorganism is grown in submerged culture in a fermen-
tation medium, which contains various carbon, nitrogen
and trace-metal sources required by the organism for its
nutrition. The organism is grown under the conditions of
pure culture, i.e. other microorganisms are excluded from
the fermentation, as they might compete for nutrients. They
may also produce enzymes, which are detrimental to the
desired antibiotic, thus reducing the yield of the product.
When the fermentation has reached peak potency, the an-
tibiotic is recovered. Following extraction, purification and
crystallization are carried out. A mixed binary solvent, con-
sisting of methyl ethyl ketone (MEK) and methyl isobutyl
ketone (MIBK) is added to the crystallization step. Follow-
ing crystallization, the mother liquor is separated from the
product penicillin crystals and a portion of this is recycled.
Some fresh solvent is added as make-up to account for
the solvent losses in the process and through the effluent.
Thus, there is one process sink (crystallizer) that requires
mixed solvent, one process source (from the filter) and fresh
solvent, which is added as make-up.
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The following respective upper and lower bounds have to
be satisfied.

For the process sink,

f T
u = 12 kg/s, f T

l = 8 kg/s, xT
u = 0.43, xT

l = 0.31

For the process source,

fu = 7.5 kg/s, fl = 3 kg/s, xu= 0.84, xl= 0.72

The cost of fresh solvents MEK and MIBK are US$ 0.12 and
0.35/kg, respectively. The cost of the process source (from
the filter) is US$ 0.17/kg. It is desired to find the minimum
cost of mixing and recycling for the given system.

7.2. Solution to case study one

The first step in the solution is to define four increments.
These are given in Eq. (25) through 28. AllN values are
set to 10. Four iteration indicesi, j, k and l are defined for
the variablesf T, xT, f andx. The outer level in the solution
algorithm consists of iterations among various values off T,
xT, f andx using the following:

f T = f T
u − iDf T (43)

xT = xT
u − jDxT (44)

f = fu − kDf (45)

x = xu − lDx (46)

The outer level iterations are carried out till the following
conditions are satisfied:

i ≤ N1 (47)

j ≤ N2 (48)

k ≤ N3 (49)

l ≤ N4 (50)

The inner level deals with the optimization of a linear pro-
gram. This case study can be solved using the framework
generated earlier for a binary system with single process
source and sink. The rules derived from the simplex algo-
rithm were discussed previously (see Fig. 6). The solution
algorithm is given in Fig. 5.

A fortran program was written to solve the above prob-
lem. The program was run on a Sun SPARC Station 2 and
converged to the optimal global solution in about 5 s. The
minimum cost is determined to be US$ 1.94/s. The optimal
recycle strategy would be to recycle 4.78 kg/s of the solvent
recovery stream and mix with 3.22 kg/s of fresh MIBK. The
final flow rate to the process sink is 8 kg/s with overall com-
position 0.43. The process source composition is 0.72. This
solution is not apparent before the above analysis is carried
out. The optimal solution recommends not using the cheap-
est species (MEK). Also, though up to 7.5 kg/s of a process

source is available for recycle, only 4.78 kg/s is to be recy-
cled. Thus, maximum usage of an available process source is
not recommended. From the final values of the process sink
and source compositions, we can calculateα using Eq. (29)
as −0.0144. Using Fig. 6 and noting thatx3>xt, Eq. (32)
can be used to obtain optimal flow rates of the process and
fresh sources. As described previously, there exists a multi-
tude of possible solution strategies but the above procedure
ensures that the final solution isglobal.

7.3. Case study two

Given in Fig. 10 is the process flow diagram for
urea-adduct separation [33]. Urea forms addition com-
plexes with straight chain, or nearly straight chain, organic
compounds such as paraffins and unsaturated hydrocar-
bons, acids, esters and ketones. This property allows one
to separate hydrocarbons based on their affinity to form
complexes with urea. The hydrocarbon feed stock is fed
continuously to a stirred reactor, where it is contacted with
a solution of urea in a suitable solvent. A ternary mixed
solvent containing methanol, ethanol and propanol is used
in this process. The reacted slurry, containing tiny crystals
of urea adducts withn-paraffins or straight chain olefins,
passes to a liquid–solid separator. The mother liquor from
this goes to a settler followed by recovery of urea and
solvent. After some fresh make-up is added to account for
solvent losses, the recovered urea and solvent are recycled
back to premixing tank and subsequently sent to the reactor.
Thus, there is one process sink (premixing tank) requiring
mixed solvent. There is one process source (from solvent
recovery) and fresh solvent is added as make-up. This type
of process is industrially highly significant and its major
large-scale application is in de-waxing of lubricating oils.

The following respective upper and lower bounds are to
be satisfied:

For the process sink,

f T
u = 22.5 kg/s, f T

l = 19 kg/s,

xT
1,u = 0.43,xT

1,l= 0.3, xT
2,u= 0.52, xT

2,l= 0.37

For the process source,

fu = 5 kg/s, fl = 1 kg/s, xl,u = 0.63,

x1,l = 0.54, x2,u = 0.11, x2,l = 0.04

The cost of fresh methanol (1), ethanol (2) and propanol
(3) are US$ 0.33, 0.25 and 0.37/kg, respectively. The cost of
the process source (from solvent recovery) is US$ 0.29/kg. It
is desired to find the minimum cost of mixing and recycling
for the given system.

7.4. Solution to case study two

The first step in the solution is to define six increments cor-
responding tof T, xT

1 , xT
2 , f, x1 andx2. These can be given
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Fig. 10. Process flow diagram for the urea-adduct separation process.

as

1f T = (f T
u − f T

l )

N1
(51)

1xT
1 = (xT

1,u − xT
1,l)

N2
(52)

1xT
2 = (xT

2,u − xT
2,l)

N3
(53)

1f = (fu − fl)

N4
(54)

1x1 = (x1,u − x1,l)

N5
(55)

1x2 = (x2,u − x2,l)

N6
(56)

We define six iteration indices say,i, j, k, l, m andn, cor-
responding to the above six increments. The outer level in
the solution algorithm consists of iterations among various
values off T, xT

1 , xT
2 , f, x1 andx2 using the following:

f T = f T
u − i1f T (57)

xT
1 = xT

1,u − j1xT
1 (58)

xT
2 = xT

2,u − k1xT
2 (59)

f = fu − l1f (60)

x1 = x1,u − m1x1 (61)

x2 = x2,u − n1x2 (62)

Also, as all mole fractions add up to one, we have

xT
3 = 1.0 − xT

1 − xT
2 (63)

x3 = 1.0 − x1 − x2 (64)

The outer level iterations are carried out till the following
conditions are satisfied:

i ≤ N1 (65)

j ≤ N2 (66)

k ≤ N3 (67)

l ≤ N4 (68)

m ≤ N5 (69)

n ≤ N6 (70)

The inner level deals with the optimization of a linear pro-
gram. This case study can be solved using the framework
generated earlier for a ternary system with single process
source and sink. The rules derived from the simplex algo-
rithm were discussed previously (see Fig. 7). A solution
algorithm analogous to Fig. 5 can be set up.

A fortran program was written to solve the above
problem. All values ofN were taken to be equal to 10. The
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respective increments are calculated. The program was run
on a Sun SPARC Station 2 and converged to the optimal
global solution in about 35 s. The optimal minimum cost
was determined to be US$ 5.296/s. The optimal recycle
strategy would be to recycle 4.99 kg/s of the solvent recov-
ery stream and mix with 4.33 kg/s of fresh methanol and
9.68 kg/s of fresh ethanol. The final flow rate to the pro-
cess sink is 19 kg/s with compositions of methanol, ethanol
and propanol being 0.39, 0.52 and 0.09, respectively. The
process source compositions were 0.62, 0.04 and 0.34 for
methanol, ethanol and propanol, respectively. This solu-
tion is not apparent before the above analysis is carried
out.

From the final values of the process sink and source com-
positions, we can calculateα (from Eq. (34)) as−0.0504.
Using Fig. 7, the values ofθ1, θ2 andθ3 are calculated as
11.95, 247 and 4.99, respectively (from Eq. (36)). Asθ3
has the least value, Eq. (39) will give the optimal flow rates
of the process and fresh sources. It must be noted that the
above solution approach, besides coming up with the opti-
mal flow rates of various sources to be recycled, also fixes
the optimal compositions of the process sources and sinks.
This enables the identification of an optimal operating point
for the process at which the cost of mixing and recycling
would be minimized.

8. Conclusions

This paper considers an important aspect of every chemi-
cal process. It proposes a solution strategy to come up with
theglobalcheapest mixing and recycling scheme. A generic
non-linear program formulation is given and the solution
algorithm, consisting of two different levels, is proposed.
The decomposition into two levels was made based on the
observation that the non-linear program reduces to a linear
program in a special case. The solution strategy is generic
enough to handle many sources and sinks. The simplex
method is used to generate solutions for cases with lower
number of sources and sinks. It is used to derive frameworks
wherein, the optimal flow rates of the different sources can
be obtained as functions of relative costs and compositions.
These frameworks can be used to generate optimal recy-
cling schemes. A relational cost parameter is introduced and
used. Two different case studies, dealing with the manufac-
ture of penicillin and a urea-adduct process, are considered.
Theglobal recycling solution was determined for each case
study and it was shown that these solution strategies are not
arbitrary but are generated based on the systematic applica-
tion of the proposed solution algorithm.
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Appendix A

Some of the formulae used in Fig. 8 are listed below

β1 = α2 − α1
(1 − x4)

(1 − x3)

β2 = α2 − α1
x4

x3

β3 = α2
(1 − x3)

(1 − x4)
− α1

β4 = α2
x3

x4
− α1

fa = ft
(1 − xt)

(1 − x3)

fb = ft
xt

x3

fc = ft
(1 − xt)

(1 − x4)

fd = ft
(xt − x3)

(x4 − x3)

fe = ft
xt

x4

ff = fc − f U
3

(1 − x3)

(1 − x4)

fg = fe − f U
3

x3

x4

fh = f U
3 − ft

(x4 − xt)

(x4 − x3)

fi = f U
3 − fa + f U

4
(1 − x4)

(1 − x3)

fj = f U
3 − fb + f U

4
x4

x3

From Fig. 8, there are 17 possible outcomes depending on
various conditions listed above and each of these is marked
with a number. The flow rates can be calculated as
1. f1 = ft(1 − xt), f2 = ft ∗ xt

2. f1 = ft
(xt − x3)

(1 − x3)
, f3 = ft

(1 − xt)

(1 − x3)

3. f2 = ft
(x3 − xt)

x3
, f3 = ft

xt

x3

4. f1 = ft
(xt − x4)

(1 − x4)
, f4 = ft

(1 − xt)

(1 − x4)

5. f3 = ft
(x4 − xt)

(x4 − x3)
, f4 = ft

(xt − x3)

(x4 − x3)
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6. f1 = ft
(xt − x3)

(1 − x3)
− f U

4
(x4 − x3)

(1 − x3)
,

f3 = ft
(1 − xt)

(1 − x3)
− f U

4
(1 − x4)

(1 − x3)
, f4 = f U

4

7. f2 = ft
(x4 − xt)

x4
, f4 = ft

xt

x4

8. f3 = ft
(x4 − xt)

(x4 − x3)
, f4 = ft

(xt − x3)

(x4 − x3)

9. f2 = ft
(x3 − xt)

x3
+ f U

4
(x4 − x3)

x3
,

f3 = ft
xt

x3
− f U

4
x4

x3
, f4 = f U

4

10. f1 = ft ∗ xt − x3 ∗ f U
3 ,

f2 = ft(1 − xt) − (1 − x3)f
U
3 , f3 = f U

3

11. f1 = ft ∗ xt − x3 ∗ f U
3 − x4 ∗ f U

4 ,

f2 = ft(1 − xt) − (1 − x3)f
U
3 − (1 − x4)f

U
4 ,

f3 = f U
3 , f4 = f U

4

12. f1 = ft
(xt − x4)

(1 − x4)
+ f U

3
(x4 − x3)

(1 − x4)
,

f3 = f U
3 , f4 = ft

(1 − xt)

(1 − x4)
− f U

3
(1 − x3)

(1 − x4)

13. f2 = ft
(x4 − xt)

x4
+ f U

3
(x3 − x4)

x4
,

f3 = f U
3 , f4 = ft

xt

x4
− f U

3
x3

x4

14. f3 = ft
(x4 − xt)

(x4 − x3)
, f4 = ft

(xt − x3)

(x4 − x3)

15. f1 = ft
(xt − x3)

(1 − x3)
− f U

4
(x4 − x3)

(1 − x3)
,

f3 = ft
(1 − xt)

(1 − x3)
− f U

4
(1 − x4)

(1 − x3)
, f4 = f U

4

16. f2 = ft
(x4 − xt)

x4
, f4 = ft

xt

x4

17. f2 = ft
(x3 − xt)

x3
+ f U

4
(x4 − x3)

x3
,

f3 = ft
xt

x3
− f U

4
x4

x3
, f4 = f U

4
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